Abstract
A reduced-activation ferritic/martensitic (RAF/M) steel, JLF-1, is considered as one of the candidate structure material of the fusion reactors and supercritical water-cooled reactor (SCWR). Low cycle fatigue properties of JLF-1 steel at elevated temperature are the design base to provide adequate design margin against postulated mechanism that could experience during its design life, such as stress range, plastic deformation, and cyclic softening etc. However, the reduction in design margin is significant when the cyclic softening happens in cyclic deformation at RT, 673K, 873K. Thus, for the application as the structural materials, it is necessary to evaluate low cycle fatigue behavior and cyclic softening of JLF-1 steel at elevated temperature since those properties of material at elevated temperature are the key issue for design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.