Abstract
A dynamic model has been developed to simulate transient response of a heat transfer loop coupling the heat rejection of the Freon side of a heat pump to the soil as a heat sink. The model simulates thermal storage effects in both the soil and the water side. The closed water loop side is also simulated using convective transport and conduction effects from the water to the soil. This paper presents how the model works, using a sample of real experimental data from an existing refrigeration system as the input or forcing function for the model. The simulation is repeated for 18 cycles using the same daily input on the condenser heat rejection side to observe when the effect of the initial conditions subsides and when the simulation reaches a cyclic steady state. The model shows the temperature distribution in the water along the length of the loop. It can also monitor the average soil temperature for the whole solution domain. With the advent of affordable computing power, the model should be useful for design purposes, after adequate testing. The model can be used in choosing the optimum length for a water loop according to the type of soil and heat transfer demand patterns imposed on that part of the heat pump which is coupled to the ground and some a priori design criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.