Abstract

In this article, we introduce cyclic relatively nonexpansive mappings with respect to orbits and prove that every cyclic relatively nonexpansive mapping with respect to orbits T satisfying T A ⊆ B , T B ⊆ A has a best proximity point. We also prove that Mann’s iteration process for a noncyclic relatively nonexpansive mapping with respect to orbits converges to a fixed point. These relatively nonexpansive mappings with respect to orbits need not be continuous. Some illustrations are given in support of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.