Abstract

ABSTRACTA comparison of tributyltin chloride, dibutyltin dichloride, and butyltin trichloride as catalysts of ring‐opening polymerizations (ROPs) of l‐lactides at 160 °C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L‐lactide)s with weight average molecular weights (Mw's) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2 < Bu2SnCl2 < <Ph2SnCl2. In this series also, the most reactive catalyst yields cyclic polylactides, but the extent of cyclization varies with the molecular weight. The formation of cyclic polylactides is explained by ROP combined with simultaneous polycondensation involving end‐to‐end cyclization (ROPPOC method). ROP of meso‐lactide at 80 or 60 °C yields even‐numbered linear chains as main products, a result supporting the ROPPOC mechanism. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 952–960

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call