Abstract

To determine the nature of damage acting on a fatigue crack-tip, it is mandatory to know the detailed cyclic plastic deformation response. In this work, cyclic plastic deformation response has been studied on a stationary CT specimen crack-tip in an elasto-plastic finite element frame work at selected R-ratios and ΔK. Chaboche kinematic hardening model has been used to describe material behavior. Monotonic and cyclic/reverse plastic zone identified during plane strain finite element analysis. It is noticed that progressive accumulation of permanent strain i.e. ratcheting occurs in the cyclic plastic zone ahead of a fatigue crack-tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call