Abstract

Small concrete cover to dowel’s diameter reduces the cyclic performance of precast concrete frame with pinned dowel beam-column connection due to brittle concrete splitting failure around the dowel joint. Besides, utilisation of bearing pad thicker than half of dowel’s diameter causes the dowel bar to sustain greater tensile stress and plastic elongation up to their breaking point due to larger inclination of the dowel bar, particularly under the action of cyclic loading. Hence, a new precast beam-column joint with hook-end configuration and utilizing the advantage of high damping rubber (HDR), was proposed as the alternative for precast structures. Therefore, this study presented the horizontal and vertical cyclic performances of the precast frames with the proposed joint, through numerical analysis using finite element software. The numerical results were compared with a numerical modelled single pinned dowel connected precast frame, which was verified with the experimental results under horizontal cyclic loading. In terms of accumulative energy dissipation capacity, the numerical results showed that precast frames with the proposed joint demonstrated approximately 230% and 120% of improvement at 40 mm of horizontal cyclic level and 7 mm of vertical cyclic level, respectively, than the precast frame with single pinned dowel connection. It indicates that the viscoelastic behavior of HDR has contributed the benefit in this improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.