Abstract
Sickle cell disease is a missense genetic disorder characterized by the aggregation of deoxy-HbS into helical fibers that distort erythrocytes into a sickle-like shape. Herein, we investigate, through molecular dynamics, the effect of nine 5-mer cyclic peptides (CPs), tailor-designed to block key lateral contacts of the fibers. Our results show that the CPs bind orthogonally to the main HbS pocket involved in the latter contacts, with some revealing exceedingly long residence times. These CPs display moderate to high specificity, exhibiting molecular recognition events even at a HbS/CP (1:1) ratio. A much lower HbS-CP binding free energy, longer residence times, and higher specificity are also found relative to a previously reported CP with modest in vitro antisickling activity. These results indicate that some of these CPs have the potential to reduce the concentration of aggregation-competent deoxy-HbS, precluding or delaying the formation of lateral contact at the homogeneous nucleation stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.