Abstract

The cyclic oxidation of Haynes 230 alloy (Ni-Cr-W-Mo alloy) was investigated in air at three different temperatures, 871, 982 and 1093 °C. Studies indicated that during cyclic oxidation, protective scales formed which were predominantly Cr2O3, with Kirkendall voids formed both at the scale/alloy interface and grain boundaries. Intergranular oxides were observed at temperatures above 982 °C while internal oxide particles were found above 1093 °C. Both intergranular and internal oxides were identified as aluminium oxide. A 50 μm chromium-depleted zone developed after 70 h exposure at 1093 °C and was accompanied by disastrous scale spalling. The lowest chromium concentration within the depleted zone was 14 wt% which still provided a sufficient supply of chromium for development of a continuous Cr2O3 rich scale. Decarburization was observed at the higher temperature of 1093 °C, and a carbide-free zone developed. Also, it was found that Haynes 230 is subject to a sensitization process. At the lower exposure temperature of 871 °C, large amounts of chromium carbide formed preferentially at the grain boundaries. While at the surface region chromium carbide precipitation occurred at the twin boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.