Abstract

Abstract Fully dense, monolithic ternary Cr2AlC compounds were synthesized via a powder metallurgical route, and their cyclic oxidation behavior was investigated between 1000 and 1300 °C in air for up to 100 h. At 1000 and 1100 °C, Cr2AlC displayed excellent cyclic oxidation resistance by forming a less than 5 μm-thick Al2O3 oxide layer and a narrow Cr7C3 underlayer. At 1200 and 1300 °C, an outer (Al2O3, Cr2O3)-mixed oxide layer, an intermediate Cr2O3 oxide layer, an inner Al2O3 oxide layer, and a Cr7C3 underlayer formed on the surface. From 1200 °C, scale cracking and spalling began to occur locally to a small extent. At 1300 °C, the cyclic oxidation resistance deteriorated owing to the formation of voids and the spallation of the scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.