Abstract

The dynamics of propagating liquid pulsations generated via various cyclic operation strategies in trickle beds was monitored through electrical capacitance tomography (ECT) for gas and liquid superficial velocities in the range of trickle flow regime. The characteristics of ON−OFF liquid, ON−OFF gas, and gas/liquid alternating cyclic operations were compared in terms of mean liquid holdup, pressure drop, pulsation intensity, pulsation propagation velocity, and spatial maldistribution maps of liquid holdup and liquid pulsation propagation velocity. The morphological features of liquid holdup pulsations as a function of cycle frequency were characterized in terms of breakthrough, plateau, and decay times. Gas/liquid alternating cyclic strategy was shown to produce long-lived liquid pulsations under the applied operating conditions and thus could be viewed as a new process intensification means to achieve uniform phase holdup and velocity distributions. In ON−OFF liquid cyclic operation, pulsation velocity ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call