Abstract

Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call