Abstract

Cultured rat aortic vascular smooth muscle cells (VSMC) express both cGMP- inhibited cAMP phosphodiesterase (PDE-3) and Ro,20-1724-inhibited cAMP phosphodiesterase (PDE-4) activities. Utilizing a PDE-3-selective inhibitor (cilostamide) and a PDE-4-selective inhibitor (Ro,20-1724), PDE-3 and PDE-4 activities were shown to account for 15 and 55% of total VSMC cAMP phosphodiesterase (PDE) activity. Incubations of VSMC with either forskolin or 8-bromo-cAMP caused a concentration- and time-dependent increase in total cellular cAMP PDE activity. In these cells, both PDE-3 and PDE-4 activities were increased, with a relatively larger effect observed on PDE-3 activity. Similar incubations with an activator of soluble guanylyl cyclase (sodium nitroprusside) or with 8-bromo-cGMP did not increase cAMP PDE activity. cAMP-induced increases in cAMP PDE activity were inhibited with actinomycin D or cycloheximide, demonstrating that new mRNA and protein synthesis were required. We conclude that VSMC cAMP PDE activity is elevated following long-term elevation of cAMP, and that increases in PDE-3 and PDE-4 activities account for more than 70% of this increase. These results may have implications for long-term use of cAMP PDE inhibitors as therapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call