Abstract

Components in jet engines are subject to time-dependent multiaxial loading. This creates a time-varying mixed-mode stress state at the crack tip. Mixed-mode loading leads to out-of-plane crack propagation and has been treated in previous articles [1,2]. This paper concentrates on coping with the time-dependent character. Key issues are the crack propagation rate and the crack propagation direction in three-dimensional space. In order to determine the prevalent crack propagation direction the dominant loading case is determined based on its crack propagation rate. Then, a mixed-mode equivalent K-factor is calculated for all other loading cases based on the closeness of their associated crack propagation direction with the dominant one. Subsequently, a cycle extraction is performed on the crack propagation rate for all loading cases. The extracted cycles are processed based on their mimimum and maximum equivalent K-factor and the maximum temperature. The mission crack propagation rate consists of the sum of the rate of all extracted cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call