Abstract

Prostacyclin (PGI(2)), a potent smooth muscle relaxant, is a major prostaglandin secreted from human myometrium. The concentrations of PGI(2) metabolites in the maternal plasma were reported to be elevated during pregnancy, especially in labor. To clarify the mechanism in PGI(2) secretion from the myometrium, we first investigated the protein expression of cytosolic phospholipase A(2), cyclooxygenase (COX)-1, COX-2, and prostacyclin synthase (PGIS) in the human uterine myometrium at various gestational ages before labor. To elucidate the involvement of labor in the increase in PGI(2) production during labor, we next examined the effect of labor-like cyclic mechanical stretch on PGI(2) production by cultured human myometrial cells. Pregnancy specifically increased COX-1 and PGIS protein expression in the myometrial tissues before labor (P < 0.01 for both). Cyclic mechanical stretch augmented PGIS promoter activity, via activation of activator protein-1 site, and PGIS mRNA and protein expression in cultured human myometrial cells and resulted in a 3.5-fold increase in the concentration of 6-keto-prostaglandin F(1alpha), the stable metabolite of PGI(2), in the culture medium (P < 0.05). However, stretch did not affect the levels of prostaglandin E(2), prostaglandin F(2alpha), or thromboxane A(2) secreted into the same culture media. These results suggest that cyclic mechanical stretch during labor may contribute to the increase in the PGI(2) concentration in the maternal plasma during parturition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.