Abstract

In this study, cyclic loading tests were conducted on reinforced concrete (RC) portal frames with brace-type friction dampers. The boundary conditions that could reproduce the axial forces exerted on the beams were adopted. To resist the axial force acting on the RC member, a damper connection method was employed by using steel inserted through the center of the RC member. The purpose of this study was to a) understand the behavior of the damper connection and the RC frame with brace-type friction dampers based on experimental tests and b) to confirm the effectiveness of the new connection method. According to the test results, the proposed connection method achieved effective damper connections in the RC frames. For the RC frame specimens with dampers, it was confirmed that the damper reached its sliding force and started to dissipate energy at an early stage with story drift ratios smaller than those at RC beam yielding. The welded part of the gusset plate and the steel inserted through the center of the RC beam were broken. When the welded part inside the beam broke and the axial deformation of the beam increased, the sliding displacement of the damper decreased. Therefore, a reliable jointing method of this part needs to be established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.