Abstract

We propose a cut-free cyclic system for transitive closure logic (TCL) based on a form of hypersequents, suitable for automated reasoning via proof search. We show that previously proposed sequent systems are cut-free incomplete for basic validities from Kleene Algebra (KA) and propositional dynamic logic (text {PDL}), over standard translations. On the other hand, our system faithfully simulates known cyclic systems for KA and text {PDL}, thereby inheriting their completeness results. A peculiarity of our system is its richer correctness criterion, exhibiting ‘alternating traces’ and necessitating a more intricate soundness argument than for traditional cyclic proofs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.