Abstract

Cyclic hot corrosion conducted on Haynes 230 at temperatures of 871 and 1093δ C indicated that catastrophic corrosion occurred. The corrosion rate was related to the high content of tungsten and chromium in the alloy. The concept of basic and acid fluxing was applied to explain the dissolution of the protective film of Cr2O3 and volatile WO3 by an Na2SO4-rich liquid due to the formation of Na2CrO4 and Na2WO4. As the basic melts were acidified by continuously consuming oxygen ions, plate-like crystals of Cr2O3 were precipitated on the free surface by conversion from Na2CrO4. Acid fluxing was achieved by the refractory oxide, WO3, consuming oxygen ions. The presence of sulphur suppressed the diffusion of chromium outward to form protective Cr2O3. Internal chromium-rich sulphide particles were observed. It was suggested that at very lowPO2, sulphur reacted with chromium to form CrS initially. As oxygen penetrated through the porous layer, the CrS was oxidized internally to Cr2O3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.