Abstract

This paper focuses on the numerical solution of a class of generalized coupled Sylvester-conjugate matrix equations, which are general and contain many significance matrix equations as special cases, such as coupled discrete-time/continuous-time Markovian jump Lyapunov matrix equations, stochastic Lyapunov matrix equation, etc. By introducing the modular operator, a cyclic gradient based iterative (CGI) algorithm is provided. Different from some previous iterative algorithms, the most significant improvement of the proposed algorithm is that less information is used during each iteration update, which is conducive to saving memory and improving efficiency. The convergence of the proposed algorithm is discussed, and it is verified that the algorithm converges for any initial matrices under certain assumptions. Finally, the effectiveness and superiority of the proposed algorithm are verified with some numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.