Abstract

Background: Tubuloglomerular feedback (TGF) stabilizes nephron function by eliciting reciprocal changes in single-nephron glomerular filtration rate in response to changes in salt reaching the macula densa. Nitric oxide (NO) modulates TGF, making it less reactive. NO could come from NO synthase (NOS) in mesangium or microvessels (NOS III) or from neuronal NOS (NOS I) in the macula densa. Cyclic GMP is second messenger for many NO functions. Methods: Rat micropuncture was performed to confirm that macula densa NOS I makes the NO which modulates TGF and that cyclic GMP is a second messenger for this. The range of TGF was determined by measuring the single-nephron glomerular filtration rate while perfusing Henle’s loop. The TGF slope was calculated from the response to flow perturbations in free-flowing nephrons using a noninvasive optical technique to measure flow. The NO-cyclic GMP axis was manipulated by tubular microperfusion of the antagonists S-methyl-thiocitrulline (SMTC) and 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) and NO donor (spermine NONOate). Results: SMTC and ODQ each increased slope and range of TGF and tended to shift it leftward. NONOate reversed the effects of SMTC, but not of ODQ. Conclusion: Cyclic GMP mediates desensitization of TGF by macula densa NOS I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.