Abstract

Diunsaturated, C-18 cyclic fatty acid methyl esters (CFAME) were previously synthesized as model derivatives for characterization and biological evaluation of cyclic fatty acids (CFA) formed in heat-abused vegetable oils. The propyl substituted, diunsaturated CFMAE (I) was selectively reduced to prepare two monounsaturated, positional isomers with the double bond located either in the ester substituent (alkene isomer II) or in the ring (cyclohexene isomer III). The stereochemistry of these monounsaturated products was investigated by capillary GLC and NMR. Capillary GLC showed that each positional isomer was a mixture of two ‘ring’ isomers (i.e. a mixture of two isomers with side chains either cis or trans). The ring double bond in diene I was readily hydrogenated with various metal catalysts, and no cyclohexene isomer III was detected in the product. Platinum oxide poisoned with Ph 3P was the most selective catalyst examined to convert diene I to monoene II. Diimide reduction was the only method foud to reduce selectively the double bond in the ester side chain of diene I. This diimide reduction was facilitated when the Z-double bond in the side chain was isomerized to E-double bond with p-toluenesulfinic acid. Cyclohexene isomer III and alkene isomer II were separated by argentation HPLC. These two isomeric monoenes were characterized by GC-MS, capillary GLC, micro-ozonolysis, IR and NMR. Catalytic hydrogenation with Ph 3P-poisoned PtO 2 and diimide reduction of the diunsaturated cyclic ester may provide useful methods to synthesize and label monounsaturated cyclic fatty esters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.