Abstract

Background. The aim of this study was to compare the cyclic fatigue resistance of 2Shape, Twisted File (TF) and EndoSequence Xpress (ESX) nickel-titanium rotary files at intracanal temperature (35°C). Methods. Twenty 2Shape TS1 (25/.04), 20 TF (25/.04) and 20 ESX (25/.04) files were tested for cyclic fatigue at intracanal temperature (35°C). All the instruments were rotated in artificial canals which were made of stainless steel with an inner diameter of 1.5 mm, 60° angle of curvature and a radius curvature of 5 mm until fracture occurred; the time to fracture was recorded in seconds using a digital chronometer and the number of cycles to fracture (NCF) for each file was calculated. Kruskal-Wallis test with Bonferroni correction was performed to statistically analyze data using SPSS 21.0. Statistical significance was set at P<0.05. Results. NCF values revealed that the 2Shape had significantly the highest cyclic fatigue resistance, followed by TF and ESX at intracanal temperature (P<0.05). The difference was significant between the TF and ESX groups (P<0.05). There was no significant difference among the 2Shape, TF and ESX files with respect to the lengths of the fractured file fragments (P>0.05). Conclusion. Within the limitations of present study, it was concluded that the cyclic fatigue resistance of 2Shape files at the intracanal temperature is higher than that of TF and ESX files.

Highlights

  • Despite many advantages of nickel-titanium (NiTi) rotary instruments, their unexpected fracture during the root canal preparation is a source of concern for clinicians.[1]

  • number of cycles to fracture (NCF) values revealed that the 2Shape had significantly the highest cyclic fatigue resistance, followed by Twisted File (TF) and EndoSequence Xpress (ESX)

  • The difference was significant between the TF and ESX groups (P

Read more

Summary

Introduction

Despite many advantages of nickel-titanium (NiTi) rotary instruments, their unexpected fracture during the root canal preparation is a source of concern for clinicians.[1] File fractures that might negatively affect the success of root canal treatment occur due to cyclic or torsional fatigue without giving any prior sign. The asymmetric rotation of EndoSequence Xpress (ESX; Brasseler, Savannah, USA) NiTi rotary file, which was recently introduced to the market, makes it easier to transport the debris to the coronal area due to its triangular cross-sectional area. The aim of this study was to compare the cyclic fatigue resistance of 2Shape, Twisted File (TF) and EndoSequence Xpress (ESX) nickel-titanium rotary files at intracanal temperature (35°C)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.