Abstract

This paper aims to investigate the seismic behavior of blind bolted end plate composite frames between square or circular concrete filled steel tubular (CFST) columns and steel beams. Two composite frames were tested under a constant axial load on the CFST columns and a lateral cyclic load on the frame. Each specimen composed of CFST columns and steel beams was selected to represent a plan frame in an assembly building. Failure pattern of the type of frames was analyzed to comprehend the structural response. The seismic resistance ability of the blind bolted CFST frames was also estimated in terms of hysteretic curves, ductility and energy dissipation etc. The effect of column section type and end plate type on the type of semi-rigid CFST frames was studied. The test results showed that at the same steel ratio of the column section, the bearing capacity and energy dissipation of square CFST frame were higher than those of circular CFST frame at ultimate state. Strain response of main members in each CFST frame was also estimated. The internal force analysis of the test CFST frames with semi-rigid connections was discussed and evaluated the effect of the bending moment distribution. It was concluded that the novel typed CFST frames exhibited excellent seismic performance and structural internal force redistribution. The experimental studies will be useful for design and application of the blind bolted CFST frames in fabricated steel structure building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call