Abstract

A minimalist model of ecohydrologic dynamics is coupled to the well-known susceptible-infected-recovered epidemiological model to explore hydro-climatic controls on infection dynamics and extreme outbreaks. The resulting HYSIR model reveals the existence of a noise-induced bifurcation producing oscillations in infection dynamics. Linearization of the governing equations allows for an analytic expression for the periodicity of infections in terms of both epidemiological (e.g. transmission and recovery rate) and hydrologic (i.e. soil moisture decay rate or memory) parameters. Numerical simulations of the full stochastic, nonlinear system show extreme outbreaks in response to particular combinations of hydro-climatic conditions, neither of which is extreme per se, rather than a single major climatic event. These combinations depend on the assumed functional relationship between the hydrologic variables and the transmission rate. Our results emphasize the importance of hydro-climatic history and system memory in evaluating the risk of severe outbreaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.