Abstract
The friction stir welding (FSW) process generally induces a gradient of properties and a softer behaviour along the welded joint. To design aeronautical structures welded by FSW in fatigue, it is necessary to study the impact of this localized soft behaviour on the overall structure. In this study, the 2198-T8 hardening structural aluminium alloy is considered. Monotonic and cyclic mechanical tests are performed by combining conventional extensometric measurements with digital image correlation (DIC) to measure the local displacement fields around the welded zone. Based on these experimental data, constitutive equations are proposed and identified, zone by zone, across the welded joint. In parallel, a quantification of T1 (\(\hbox {Al}_{\mathrm {2}}\)CuLi) strengthening precipitates is performed in different regions of the joint with a transmission electron microscope in order to identify a relationship between the microstructure and the mechanical parameters. Finally, once all the material parameters are identified, the model is validated by a 3D finite element analysis representative of FSW samples.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.