Abstract

Cyclic diguanylate monophosphate (c-di-GMP) is a global signaling molecule that modulates diverse cellular processes through its downstream receptors. However, no study has fully clarified the mechanisms by which c-di-GMP organizes functionally divergent regulators to drive the gene expression for coping with environmental stress. Here, we reported that c-di-GMP can integrate two functionally opposite receptor transcription factors, namely, LtmA and HpoR, into a pathway to regulate the antioxidant processes in Mycobacterium smegmatis. In contrast to HpoR, LtmA is an activator that positively regulates the expression of redox gene clusters and the mycobacterial H2O2 resistance. LtmA can physically interact with HpoR. A high level of c-di-GMP stimulates the positive regulation of LtmA and boosts the physical interaction between the two regulators, further enhancing the DNA-binding ability of LtmA and reducing the inhibitory activity of HpoR. Therefore, upon exposure to oxidative stress, c-di-GMP can orchestrate functionally divergent transcription factors to trigger antioxidant defense in mycobacteria. This finding presents a noteworthy example of how a bacterium remodels its transcriptional network via c-di-GMP in response to environmental stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.