Abstract
Experimental data are reported on isotactic polypropylene in uniaxial tensile cyclic tests with a strain-controlled program (oscillations between fixed minimum and maximum strains). The following characteristic features of stress–strain diagrams are observed: (i) logarithmic decay in maximum and minimum stresses with number of cycles (cyclic softening), (ii) more pronounced reduction in minimum stress than in maximum stress (cyclic strengthening), (iii) independence of rates of decrease in maximum and minimum stresses of strain rate, (iv) decrease in hysteresis energy with number of cycles. To rationalize these observations, a constitutive model is derived in cyclic viscoelasticity and viscoplasticity of semicrystalline polymers. Numerical simulation demonstrates that the model correctly describes experimental stress–strain curves and quantitatively predicts evolution of maximum and minimum stresses with number of cycles. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.