Abstract

The cyclic deformation and fracture behaviour of 18Ni300 maraging steel produced by laser beam powder bed fusion is studied under variable-amplitude loading. The tests were conducted under fully-reversed strain-controlled conditions with a loading sequence comprising three ascending cycles and three descending cycles repeated sequentially until failure. After the tests, fracture surfaces were examined using height and volume surface topography parameters to characterise the fractographic features. Fracture surfaces were also analysed through scanning electron microscopy to identify the main failure modes. Fatigue life was predicted by using the Smith-Watson-Topper and the Basquin-Coffin-Manson models with the Palmgren-Miner damage rule. The former approach was more accurate leading to mean errors close to zero. The values of the kurtosis parameter obtained from both sides of the fracture surfaces correlated well with the fatigue life. SEM analysis showed a mixed ductile–brittle mode of fracture with a predominance of brittle fracture. Crack initiation occurred from manufacturing defects located at the surface or near-surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.