Abstract

A multi-step reactive ion etching (MS-RIE) process for silicon was developed for the fabrication of deep anisotropic, closely packed structures with vertical sidewalls. This process used repeated cycles of etching and the replenishment of masking layers, similar to the Bosch process (Laermer and Schilp 1996 US Patent 5,498,312) [1] that is employed in specialized etching tools. The process described here, however, can be used on conventional RIE tools, and is based on the isotropic deposition of an etch-inhibiting polymer to protect sidewalls, its anisotropic removal from the bottom etch front, and a subsequent isotropic etch into deeper layers. A conventional parallel plate etcher without fast gas management, cryogenic substrate cooling, or inductively coupled plasma density enhancement, produced these steps. Each process step was optimized for the maximal etch rate, minimal mask erosion, deposition of the thinnest polymer required to protect the sidewalls, and was tailored for use with 2 µm thick photoresist as the initial mask layer. This cyclic RIE process was used to fabricate photonic devices with high aspect ratios of etched depths over 100 µm and etch widths near 1 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.