Abstract
ABSTRACT This paper explores the effects of microstructural heterogeneity on the cyclic crack tip opening and sliding displacements for stationary, microstructurally small transgranular surface cracks in a single phase metallic polycrystal using planar double slip crystal plasticity computations. Crack tip displacements are examined under plane strain conditions for stationary cracks of different lengths relative to grain size as a function of the applied nominal strain amplitude for tension‐compression and cyclic shear. Nominal strain amplitudes range from well below to slightly above the nominal cyclic yield strength for each type of loading condition. Results indicate the complex nature of the crack tip sliding and opening displacements as functions of nominal strain amplitude and orientation of the nearest neighbour grains, the influence of the free surface in promoting the cyclic opening displacement even for cracks in the first surface grain, the rather restricted limits of applicability of linear elastic fracture mechanics, and very interesting crack tip plasticity effects which include crack tip displacement ratcheting or progressive accumulation, even for completely reversed, proportional applied loading. Results are compared for cases with and without crack face friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.