Abstract

The uniaxial ratcheting behavior of ultrafine-grained pure Cu processed by equal-channel angular pressing (ECAP) was investigated through uniaxial asymmetric cyclic stress-controlled experiments at room temperature. The effects of the mean stress and stress amplitude on the uniaxial ratcheting response and ratcheting life of the ECAP Cu were analyzed. With increasing mean stress or stress amplitude, the ratcheting strain and its rate increased, but the ratcheting life decreased. An approach based on Basquin’s method was used to describe the fatigue lifetime of the ECAP pure Cu. Additionally, a power law relationship was adopted to describe the cyclic steady creep rate. Finally, the microscopic and macroscopic fracture features were examined. It was found that at high peak stresses, cyclic creep governs the overall failure process; otherwise, cyclic creep-fatigue interaction is the dominant failure mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call