Abstract
A virtual link diagram is called mod [Formula: see text] almost classical if it admits an Alexander numbering valued in integers modulo [Formula: see text], and a virtual link is called mod [Formula: see text] almost classical if it has a mod [Formula: see text] almost classical diagram as a representative. In this paper, we introduce a method of constructing a mod [Formula: see text] almost classical virtual link diagram from a given virtual link diagram, which we call an [Formula: see text]-fold cyclic covering diagram. The main result is that [Formula: see text]-fold cyclic covering diagrams obtained from two equivalent virtual link diagrams are equivalent. Thus, we have a well-defined map from the set of virtual links to the set of mod [Formula: see text] almost classical virtual links. Some applications are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.