Abstract

Wear damage to the articulating surfaces of total joint components made of ultra high molecular weight polyethylene is associated with a fatigue fracture mechanism, despite the fact that these surfaces are subjected to primarily compressive and compressive-tensile cyclic stresses. The question arises as to whether fatigue cracks will form under such loading conditions. In this study, we experimentally demonstrated that fatigue cracks could be initiated and propagated in notched ultra high molecular weight polyethylene specimens subjected to fully compressive and compressive-tensile cyclic loading. Under these loading conditions, growth of fatigue cracks was limited: the cracks arrested without catastrophic failure of the test specimens. The final length of the crack was dependent on the load ratio of the fatigue cycle; fatigue cracks propagated to greater lengths as the load ratio was increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call