Abstract

Concrete in maritime structure is vulnerable to deterioration owing to external sulphate attack, which can be exacerbated by wetting-drying action (WDA), jeopardizing its resistance to cyclic loads such as wind, wave and earthquake actions. This study aims to investigate the compressive fatigue behavior of concrete exposed to sulphate attack and WDA in marine environment. Cyclic compressive loading test was conducted on concrete after 150 days of deterioration. The effects of sulphate attack and WDA, upper stress loading level and loading frequency on fatigue life, residual strain, variation of elastic modulus and post-cyclic compressive strength were investigated. The sulphate penetration profiles, volume change and mass change of concrete during the exposure time were also measured. In addition, the performance of limestone concrete and silicomanganese (SiMn) slag concrete was compared in the study. The sulphate ion was found to penetrate concrete up to a depth of 20 mm, with a maximum content of 1.72%–2.58% near the surface. The cyclic loading test showed that degraded concrete had 38.2% higher residual displacement and 1.4% lower modulus of elasticity than normal concrete. The sulphate attack and WDA weakened the concrete, reducing its fatigue resistance. SiMn slag concrete had a lower fatigue life, larger residual displacement and greater stiffness degradation than limestone concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call