Abstract
A collection of logic gates forms a combinational circuit if the outputs can be described as Boolean functions of the current input values only. Optimizing combinational circuitry, for instance, by reducing the number of gates (the area) or by reducing the length of the signal paths (the delay), is an overriding concern in the design of digital integrated circuits. The accepted wisdom is that combinational circuits must have acyclic (i.e., loop-free or feed-forward) topologies. In fact, the idea that “combinational” and “acyclic” are synonymous terms is so thoroughly ingrained that many textbooks provide the latter as a definition of the former. And yet simple examples suggest that this is incorrect. In this dissertation, we advocate the design of cyclic combinational circuits (i.e., circuits with loops or feedback paths). We demonstrate that circuits can be optimized effectively for area and for delay by introducing cycles. On the theoretical front, we discuss lower bounds and we show that certain cyclic circuits are one-half the size of the best possible equivalent a cyclic implementations. On the practical front, we describe an efficient approach for analyzing cyclic circuits, and we provide a general framework for synthesizing such circuits. On trials with industry-accepted benchmark circuits, we obtained significant improvements in area and delay in nearly all cases. Based on these results, we suggest that it is time to re-write the definition: combinational might well mean cyclic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.