Abstract
<abstract><p>Let $ s \geq 1 $ be a fixed integer. In this paper, we focus on generating cyclic codes over the ring $ \mathcal{R}(\alpha_1, \alpha_2, \ldots, \alpha_s) $, where $ \alpha_i \in \mathbb{F}_q\backslash \{0\} $, $ 1 \leq i \leq s $, by using the Gray map that is defined by the idempotents. Moreover, we describe the process to generate an idempotent by using the formula (2.1). As applications, we obtain both optimal and new quantum codes. Additionally, we solve the DNA reversibility problem by introducing $ \mathbb{F}_q $ reversibility. The aim to introduce the $ \mathbb{F}_q $ reversibility is to describe IUPAC nucleotide codes, and consequently, 5 IUPAC DNA bases are considered instead of 4 DNA bases $ (A, \; T, \; G, \; C) $.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.