Abstract

Since 2003, algebraic attacks have received a lot of attention in the cryptography literature. In this context, algebraic immunity quantifies the resistance of a Boolean function to the standard algebraic attack of the pseudo-random generators using it as a nonlinear Boolean function. A high value of algebraic immunity is now an absolutely necessary cryptographic criterion for a resistance to algebraic attacks but is not sufficient, because of more general kinds of attacks so-called Fast Algebraic Attacks. In view of these attacks, the study of the set of annihilators of a Boolean function has become very important. We show that studying the annihilators of a Boolean function can be translated into studying the codewords of a linear code. We then explain how to exploit that connection to evaluate or estimate the algebraic immunity of a cryptographic function. Direct links between the theory of annihilators used in algebraic attacks and coding theory are established using an atypical univariate approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.