Abstract

We give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. For proper \'etale groupoids, Tu and Xu provide a map between the periodic cyclic cohomology of a gerbe-twisted convolution algebra and twisted cohomology groups which is similar to a construction of Mathai and Stevenson. When the groupoid is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial techniques to construct a simplicial curvature 3-form representing the class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial curvature 3-form to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras. The results in this article were originally published in the author's Ph.D. thesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.