Abstract

A novel calcium-based pellet was prepared by extrusion of sol-gel CaO powder and cement with high aluminum-based content. Limestone was used for comparison. The cyclic CO2 capture performance and carbonation kinetics of the sorbents were investigated in a thermogravimetric analyzer (TGA). The changes in phase and microstructure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer Emmet Teller (BET) surface area, respectively. The results indicate that the pellet consisted of CaO and Ca12Al14O33 after initial calcination. Limestone reactivity decreased dramatically with the increase in the cycle number, whereas the pellet showed a relatively stable cyclic CO2 capture performance with high reactivity. The CO2 capture capacity of the pellet achieved 0.43 g CO2/g sorbent after 50 cycles at 650 °C and 850 °C for carbonation and calcination, respectively. Moreover, the pellet obtained fast carbonation rates with slight decay after multiple cycles. The porous microstructure of the pellet contributed to the high reactivity of the sorbent during high temperature reactions, and the support material of Ca12Al14O33, enhanced the cyclic durability of the calcium-based sorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.