Abstract

Project-specific advanced laboratory testing is employed increasingly frequently in site investigations for major offshore projects. Such testing needs to focus on characterising properties under in-situ conditions, while also catering for the effects of foundation installation and subsequent service conditions, including cyclic loading. Low-to-medium density chalk, a variable soft biomicrite, can be de-structured to soft paste under dynamic percussion or large-strain repetitive shearing, posing significant challenges and uncertainties for driven pile design. This paper draws on key outcomes from undrained cyclic triaxial test programmes on both intact chalk and dynamically de-structured (putty) chalk. The cyclic response of intact chalk resembles the fatigue behaviour of hard rocks and develops little sign of damage before sharp pore pressure reductions and brittle collapse occurs. In contrast, fully de-structured chalk develops both contractive and dilative phases, as seen with silts. The associated effective stress reductions vary systematically with the number of cycles and cyclic stress ratio. A laboratory-based global axial cyclic predictive method is proposed from the experiments and employed to predict the outcomes of field axial cyclic loading pile tests. The research provides the basis for robust cyclic design guidance for piles driven in low-to-medium density chalk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.