Abstract

Incorporating geopolymeric recycled brick aggregate concrete into steel tubes provides a promising solution to reduce environmental impact of construction and demolition waste. In this paper, geopolymeric recycled brick aggregate concrete-filled steel tubular column (GRBACFST) was developed to improve the environmental sustainability of composite column. Considering the replacement ratio of recycled brick aggregate (RBA), the thickness of the steel tube, type of cementitious materials and the axial compression ratio as the variation parameters, experimental research was performed to explore the cyclic behavior of GRBACFST columns, including the failure mode, bearing capacity, hysteresis curve, ductility and degradation characteristics. Results demonstrated that the failure of GRBACFST columns occurred in the region at column bottom, with the bulge of steel tube and crush of geopolymeric recycled brick aggregate concrete. The proposed GRBACFST columns exhibited favorable hysteretic behaviors with desired bearing capacity, excellent ductility, and energy dissipation behavior, which were enhanced by the increased thickness of the steel tube. The bearing capacity and ductility were reduced with the increase of axial compression ratio, while enhanced with thicker steel tube. Moreover, the degradation of stiffness and strength was more obvious under larger axial compression ratio. The increase of replacement ratio of RBA caused a significant reduction of bearing capacity, while it had few effect on the hysteretic index. It was concluded that the hysteretic behavior of proposed GRBACFST column was not sensitive to the types of cementitious material and geopolymers could serve as an eco-friendly binder for concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call