Abstract
Shear wall systems are one of the most commonly used lateral-load resisting systems in high-rise buildings. The composite steel plate shear wall (CSPSW) systems have strong points, such as high bearing capacity, good ductility and energy dissipation capacity, which have been increasingly used as lateral load-resisting system in steel buildings. This paper describes the experimental work related to the tests of steel plate shear wall (SPSW) system and CSPSW system. Two 1/3 scaled specimens were fabricated and tested. The tested shear wall system consisted of concrete-filled circular hollow section (CHS) steel columns, steel beams, and SPSW or CSPSW. The experimental results were summarized and discussed, which showed that both SPSW system and CSPSW system possessed good ductility and energy dissipation capacity. For SPSW system, the primary mechanism for resisting storey shear arising from lateral loads came from the post-buckling inclined tension field that forms for thin-walled steel plate. For CSPSW system, the reinforced-concrete (RC) panels attached on both sides of steel plates were able to ensure the composite action by preventing the overall buckling of steel plate. Compared with SPSW system, the bearing capacity and energy dissipation capacity of CSPSW system increased evidently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.