Abstract
Lower cold rolling reductions before reversion annealing for the grain size refinement are desired in industrial practice. This study demonstrates the effect of a low (32%) cold rolling reduction on cyclic behavior of a partially reversed (750 °C for 0.1s) structure in a 17Cr-7Ni-N type 301LN austenitic stainless steel and compares it with those of a 63% cold rolled and annealed and with a conventional coarse-grained structure. Stress amplitude and the amount of deformation-induced martensite formed under cyclic loading at the 0.6% total strain amplitude were recorded. The results showed that the partially reversed structure after the 32% cold rolling reduction exhibits the similar cyclic stress amplitude level and slight cyclic hardening as the 63% cold-rolled counterpart does. Even though the grain size refinement remains less effective at the lower reduction, the microstructure consists of higher fractions of strong retained cold-deformed austenite and martensite phases which increase the flow resistance. However, the coarse-grained structure exhibits a much lower initial stress amplitude and much more pronounced cyclic hardening. The susceptibility of austenite to transform deformation-induced martensite is practically similar among these three structures. However, the cyclic hardening is a caused by the formation of deformation-induced martensite, and the difference in the degree of cyclic hardening results from the big difference in the strength of the austenite between the partially reversed fine-grained and coarse-grained structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.