Abstract

Cyclic proof provides a style of proof for logics with inductive (and coinductive) definitions, in which proofs are cyclic graphs representing a form of argument by infinite descent. It is easily shown that cyclic proof subsumes proof by (co)induction. So cyclic proof systems are at least as powerful as the corresponding proof systems with explicit (co)induction rules. Whether or not the converse inclusion holds is a non-trivial question. In this paper, we resolve this question in one interesting case. We show that a cyclic formulation of first-order arithmetic is equivalent in power to Peano Arithmetic. The proof involves formalising the meta-theory of cyclic proof in a subsystem of second-order arithmetic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.