Abstract

The present in vitro study demonstrates an involvement of both cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) signal transduction mechanisms in the triiodothyronone (T(3))-activation of forebrain (telencephalon and hypothalamus) tyrosine hydroxylase (TH) activity in the female catfish Heteropneustes fossilis. Incubations of the enzyme preparations with different concentrations of T(3) (0.15-2.4 ng/ml) stimulated TH activity over the concentrations. Similarly, coincubations of the enzyme preparations with T(3) and cAMP (1.0 mM) or cAMP-elevating drugs such as 1-methyl-3-isobutylxanthine (1.5 mM) or theophylline (1.5 mM) increased TH activity significantly over that of T(3). The stimulatory effect of TH activity with T(3) or cAMP was coincident with a low apparent K(m) and high V(max) for the cofactor, suggesting a higher affinity of the enzyme. Incubation of the enzyme preparations with PKA (H-89) and PKC (calphostin-C) inhibitors decreased basal enzyme activity significantly, with the inhibition being greater in the former group. The incubations of the enzyme preparations with T(3) or T(3) + cAMP, followed by the different inhibitors, also decreased enzyme activity. Although T(3) could not reverse the inhibitory effect of H-89, it could over-ride the effect of calphostin-C to some extent. The suppressive effect of the inhibitors could be related to a high apparent K(m) and low V(max) for the cofactor. The evidence strongly suggests a nongenomic action of T(3) on TH activity via the cell signalling pathways, for which the cAMP-dependent PKA appears to be the major regulatory mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.