Abstract

The elevation of intracellular cAMP synergistically enhances the neuregulin-dependent proliferation of cultured Schwann cells (SCs); however, the mechanism by which this occurs has not been completely defined. To better understand this mechanism, we investigated the effect of cAMP on the activation of the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)-Akt (PKB) pathways by heregulin, a member of the neuregulin family. Using primary cultures of adult SCs, we demonstrated that the adenylyl cyclase activator, forskolin, enhanced heregulin-dependent SC proliferation by reducing the time required for S-phase entry. When cAMP levels were increased, using either forskolin or a cell permeable analogue of cAMP, the heregulin-induced phosphorylation of ERK was converted from transient to sustained and the heregulin-induced phosphorylation of Akt was synergistically increased. Consistent with these observations, studies in which inhibitors of MEK, the upstream stimulating ERK kinase, and PI3-K were administered at different times following the onset of stimulation indicated that sustained high levels of both MEK/ERK and PI3-K/Akt activity before S-phase initiation were essential for S-phase entry. Overall, these novel results indicate that in neuregulin-stimulated SCs the activation of cAMP-mediated pathways accelerates G1-S progression by prolonging ERK activation and concurrently enhancing Akt activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.