Abstract

Overproduction of interleukin (IL)-6 from synovial cells is critically involved in the pathogenesis of rheumatoid arthritis (RA). Cyclic adenosine monophosphate (AMP) response element-binding protein (CREB), a leucine zipper transcription factor, is expressed at a high level in synovial cells of patients with RA. Although CREB transactivates IL-6 expression in vascular smooth muscle cells, the relation between CREB expression and IL-6 production from arthritic synovial cells remains unclear. In this study, to determine whether CREB is implicated in IL-6 production from arthritic synovial cells, a dominant negative molecule of activation transcription factor 1 (ATF-1) was transfected into synovial cells obtained from arthritic joints of env-pX rats. These transgenic rats carrying the env-pX gene of human T-cell leukemia virus type-1 develop destructive arthritis with high titers of serum rheumatoid factor and are thus regarded as a suitable model of RA. The dominant negative ATF-1 (ATF-1DN) constitutes a heterodimer with CREB and inhibits CREB function, as CREB/ATF-1DN heterodimers no longer bind to the target sequence of CREB. We showed that transfection of ATF-1DN significantly reduced IL-6 production from arthritic synovial cells. These findings suggest that CREB is implicated in IL-6 production from synovial cells and plays an important role in RA pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call