Abstract

1. Our objective was to evaluate the mechanism of cyclic AMP-dependent arterial smooth muscle relaxation. Cyclic AMP-dependent relaxation has been proposed to result from either (a) a decrease in intracellular [Ca2+] or (b) a decrease in [Ca2+] sensitivity of myosin light chain kinase by protein kinase A-dependent phosphorylation of myosin kinase. 2. We evaluated these proposed mechanisms by examining forskolin-induced changes in aequorin-estimated myoplasmic [Ca2+], [cyclic AMP], myosin phosphorylation and stress generation in agonist-stimulated or KCl-depolarized swine common carotid media tissues. 3. Forskolin, an activator of adenylyl cyclase, increased [cyclic AMP] and reduced [Ca2+], myosin phosphorylation and stress in tissues pre-contracted with phenylephrine or histamine. This relaxation was not associated with an alteration of the [Ca2+] sensitivity of phosphorylation, nor the dependence of stress on phosphorylation. 4. Forskolin pre-treatment attenuated, but did not abolish, agonist-induced increases in [Ca2+] and stress. 5. These results suggest that cyclic AMP-induced relaxation of the agonist-stimulated swine carotid media is primarily caused by cyclic AMP-mediated decreases in myoplasmic [Ca2+].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call