Abstract

The second messenger molecule cyclic AMP dramatically modulates the apoptotic program in a wide variety of cells, accelerating apoptosis in some and delaying the rate of apoptosis in others. Human neutrophil apoptosis, a process that regulates the fate and numbers of these potentially histotoxic cells in inflammatory sites, is profoundly delayed by the cell-permeable analog of cyclic AMP, dibutyryl-cAMP. We have investigated the mechanisms underlying cyclic AMP-mediated delay of neutrophil apoptosis, and we show that cyclic AMP inhibits loss of mitochondrial potential occurring during constitutive neutrophil apoptosis. Furthermore, we demonstrate that cyclic AMP also suppresses caspase activation in these inflammatory cells. Despite increasing protein kinase A activity, this kinase is unlikely to mediate the effect of cyclic AMP on apoptosis because blockade of protein kinase A activation did not influence the survival effects of cyclic AMP. Further investigation of the signaling mechanism demonstrated that the delay of apoptosis is independent of phosphoinositide 3-kinase and MAPK activation. Our results suggest cyclic AMP delays neutrophil apoptosis via a novel, reversible, and transcriptionally independent mechanism. We show that proteasome activity in the neutrophil is vitally involved in this process, and we suggest that a balance of pro-apoptotic and anti-apoptotic proteins plays a key role in the powerful ability of cyclic AMP to delay neutrophil death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.