Abstract

The mechanisms responsible for renal dysfunction and sodium retention in cirrhosis remain unclear. Cyclic AMP (cAMP) regulates sodium reabsorption in the proximal nephron. This study investigates the role of cAMP metabolism in renal dysfunction in cirrhosis. Renal function was studied by the clearance technique in anesthetized control and cirrhotic rats with or without ascites. cAMP phosphodiesterase (PDE) activity was measured in the renal cortex in vitro. Moroever, the effects on renal function of the intravenous administration of cAMP and rolipram, a powerful and specific cAMP-PDE4 inhibitor, were evaluated. In control and in non-ascitic cirrhotic rats, cAMP administration significantly increased sodium and phosphate excretions, but did not change these excretions in cirrhotic rats with ascites. cAMP-PDE activity was higher in ascitic than in control rats (P < 0.05). Rolipram infusion significantly increased sodium and phosphate excretion only in cirrhotic rats with ascites. These results suggest that increased renal cAMP-PDE activity is responsible for resistance to the natriuretic effects of cAMP in cirrhosis and plays a role in the development of ascites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call