Abstract

We have investigated the role of 3',5'-cyclic-adenosine-monophosphate (cAMP) in mediating the coupling between energy metabolism and cell cycle progression in both synchronous cultures and oscillating continuous cultures of Saccharomyces cerevisiae. For the first time, a peak in intracellular cAMP was shown to precede the observed breakdown of trehalose and glycogen during cell cycle-related oscillations. Measurements in synchronous cultures demonstrated that this peak can be associated with the cell cycle dynamics of cAMP under conditions of glucose-limited growth, which was found to differ significantly from that observed in synchronous glucose-repressed cultures. Our results support the notion that cAMP plays a major role in mediating the integration of energy metabolism and cell cycle progression, both in the single cell and during cell cycle-related oscillations in continuous culture, respectively. Evidence is presented that the dynamic behaviour of intracellular cAMP during the cell cycle is modulated depending on nutrient supply. The implications of these findings regarding the role of cAMP in regulating cell cycle progression and energy metabolism are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.